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A large number of complex systems find a natural abstraction in the
form of weighted networks whose nodes represent the elements
of the system and the weighted edges identify the presence of an
interaction and its relative strength. In recent years, the study of
an increasing number of large-scale networks has highlighted the
statistical heterogeneity of their interaction pattern, with degree
and weight distributions that vary over many orders of magnitude.
These features, along with the large number of elements and links,
make the extraction of the truly relevant connections forming the
network’s backbone a very challenging problem. More specifically,
coarse-graining approaches and filtering techniques come into con-
flict with the multiscale nature of large-scale systems. Here, we
define a filtering method that offers a practical procedure to extract
the relevant connection backbone in complex multiscale networks,
preserving the edges that represent statistically significant devi-
ations with respect to a null model for the local assignment of
weights to edges. An important aspect of the method is that it
does not belittle small-scale interactions and operates at all scales
defined by the weight distribution. We apply our method to real-
world network instances and compare the obtained results with
alternative backbone extraction techniques.
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I n recent years, a huge amount of data on large-scale social, bio-
logical, and communication networks, meticulously collected

and catalogued, has become available for scientific analysis and
study. Examples can be found in all domains; from technologi-
cal to social systems and transportation networks on a local and
global scale, and down to the microscopic scale of biochemical
networks (1–3). Common traits of these networks can be found
in the statistical properties characterized by large-scale hetero-
geneity with statistical observables such as nodes’ degree and
traffic varying over a wide range of scales (4). The sheer size
and multiscale nature of these networks make very difficult the
extraction of the relevant information that would allow a reduced
representation while preserving the key features we want to high-
light. A typical example is seen in the visualization of networks.
Although, in general, it is possible to create wonderful images
of large-scale heterogeneous networks, the amount of valuable
information gathered is in most cases very little because of the
redundant intricacy generated by the overwhelming number of
connections. Problems such as the extraction of the relevant back-
bone or the isolation of the statistically relevant structures/signal
that would allow reduced but meaningful representations of the
system are indeed major challenges in the analysis of large-scale
networks.

In complex weighted networks, the discrimination of the right
trade-off between the level of network reduction and the amount
of relevant information preserved in the new representation faces
us with additional problems. In many cases, the probability distri-
bution P(ω) that any given link is carrying a weight ω is broadly
distributed, spanning several orders of magnitude. This feature
implies the lack of a characteristic scale and any method based

on thresholding would simply overlook the information present
above or below the arbitrary cutoff scale. Although this issue would
not be a major drawback in networks where the intensities of all the
edges are independently and identically distributed, the cutoff of
the P(ω) tail would destroy the multiscale nature of more realistic
networks where weights are locally correlated on edges incident to
the same node and nontrivially coupled to topology (5). Thus, the
presence of multiscale fluctuations calls for reduction techniques
that consistently highlight the relevant structures and hierarchies
without favoring any particular resolution scale. Furthermore, it
also demands a change in the focus toward a local perspective
rather than a global one, where the relevance of the connections
could be decided at the level of nodes in relative terms.

In this work, we concentrate on a particular technique that oper-
ates at all the scales defined by the weighted network structure.
This method, based on the local identification of the statistically
relevant weight heterogeneities, is able to filter out the backbone
of dominant connections in weighted networks with strong disor-
der, preserving structural properties and hierarchies at all scales.
We discuss our multiscale filter in relation to the appropriate null
model that provides the basis for the statistical significance of the
heterogeneity measurements. We apply the technique to two real-
world networks, the U.S. airport network and the Florida Bay
food web, and compare the results with those obtained by the
application of thresholding methods.

Results and Discussion
In statistical mathematics, as in other areas, filtering techniques
aimed at uncovering the relevant information in datasets are pop-
ular and successful. One could cite, for instance, the Principal
Components Analysis to identify hidden patterns by reducing the
effective dimension of multivariate data (6). In the following, we
will refer to the network reduction as the construction of a network
that contains far fewer data (in our case, links) and allows the
discrimination and computational tractability of the relevant fea-
tures of the original networks; for instance, the traffic backbone
of a large-scale transportation infrastructure. Reduction schemes
can be divided into two main categories: coarse-graining and fil-
tering/pruning. In the first case, nodes sharing a common attribute
could be gathered together in the same class—group, community,
etc.—and then substituted by a single new unit that represents the
whole class in a new network representation of the system (7–10).
This coarse-graining is indeed zooming out the system so that it
can be observed at different scales. Something completely differ-
ent is done when a filter is applied. In this case, the observation
scale is fixed and the representation that the network symbolizes is
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not changed. Instead, those elements, nodes and edges, that carry
relevant information about the network structure are kept while
the rest are discarded. An example of a well-known hierarchical
topological filter, although usually not referred to as such, is the
k-core decomposition of a network (11), with a filtering rule that
acts on the connectivity of the nodes.

In the case of weighted networks (5), two basic reduction tech-
niques refer to the extraction of the minimum spanning tree and
the application of a global threshold on the weights of the links
so that just those that beat the threshold are preserved. The min-
imum spanning tree of a graph G, a classical concept of graph
theory (12), is the shortest-length tree subgraph that contains all
the nodes of G. These definitions can be generalized for weighted
graphs (13). A minimum spanning tree of a weighted graph G
is the spanning tree of G whose edges sum to minimum weight.
This idea has been exploited along with percolation criticality to
define superhighways in weighted networks (14). By using oppor-
tune transformation rules for the weights, it is also possible to
define maximum weighted spanning trees and other analogous
definitions. One of the big limitations of this method is that span-
ning trees are by construction acyclic. This means that reduced
networks obtained by this algorithm are overly structural simpli-
fications that destroy local cycles, clustering coefficient, and the
clustering hierarchies often present in real world networks.

These previous drawbacks are not present in the application of
a threshold to the global weight distribution that removes all con-
nections with a weight below a given value ωc. This filter has been
used, for instance, in the study of functional networks connecting
correlated human brain sites (15) and food web resistance as a
function of link magnitude (16). This approach, however, belit-
tles nodes with a small strength s (defined as the sum of weights
incident to the node si = ∑

j wij), since the introduction of ωc

induces a characteristic scale from the outset. As a consequence,
strongly disordered networks with heavy-tailed statistical distribu-
tions P(s) and P(ω) cause this simple thresholding algorithm to be
very poorly performing since nodes with small s are systematically
overlooked. This is an even more serious drawback when weights
are correlated at the local level. In this type of network, interesting
features and structures are present at all scales and the introduc-
tion of such an artificial cutoff drastically removes all information
below the cutoff scale.

Local Fluctuations. To develop a multiscale reduction algorithm,
we take advantage of the local fluctuations of weights on the links
emanated by single nodes. In heterogeneous weighted networks
with strong disorder, i.e., heavy-tailed P(ω) and P(s) distribu-
tions, a few links carry the largest proportion of the node’s total
strength. Furthermore, most real networks have nodes surrounded
by incident edges with associated weights that are heterogeneously
distributed and correlated between them. The fingerprint of these
correlations is observed in the nontrivial dependence between
weights and topology (5). The better a node is connected to the
rest of the network, the higher the weight of its edges so that the
strength tends to grow superlinearly with the degree. However, the
strength alone is not enough to capture the weighted structure of
nodes even at the local level. We need to introduce some measure
of the fluctuations of the weights attached to a given node, and we
want to do it at the local level in relative terms so that each node
could independently assess the importance of its connections. To
this end, we first normalize the weights of edges linking node i with
its neighbors as pij = ωij/si, being si the strength of node i and wij
the weight of its connections to its neighbor j. Then, by using the
disparity function defined in Materials and Methods, it is possible
to see that, even at the local level defined by the edges adjacent to
a single node, a few of those edges carry a disproportionate frac-
tion pij of the node’s strength, with the remaining edges carrying
just a small fraction of the node’s strength (17, 18).

Being more specific, we are interested in all edges with weights
representing a significant fraction of the local strength and weight
magnitude of each given node. However, local heterogeneities
could simply be produced by random fluctuations. It is then fun-
damental to introduce a null model that informs us about the
random expectation for the distribution of weights associated to
the connections of a particular node. Empirical values not statis-
tically compatible with the null model define, on a node-by-node
basis, whether the observed weight heterogeneity and intensity are
statistically significant and define the relevant part of the signal due
to specific and relevant organizing principles of the network struc-
ture. This procedure would determine without arbitrariness how
many connections for every node belong to the backbone of con-
nections that carry a statistically disproportionate weight—be they
one, zero, or many—providing sparse subnetworks of connected
links selected according to the total amount of weight we intend to
characterize. This reduction scheme necessarily encodes a wealth
of information because the reduced network not only contains the
links carrying the largest weight in the network, but also all links
that can be considered, according to a predefined statistical sig-
nificance level, to define the relevant structure (signal) generated
by the weight and strength assignment with respect to the sim-
ple randomness of the null hypothesis. An important aspect of
this construction is that the ensuing reduction algorithm does not
belittle small nodes in terms of strength and then offers a prac-
tical procedure to reduce the number of connections taking into
account all of the scales present in the system.

The Disparity Filter. In the following, we discuss the disparity filter
for undirected weighted networks, although it is also applica-
ble to directed ones as reported in the supporting information
(SI) Appendix. The null model that we use to define anomalous
fluctuations provides the expectation for the disparity measure of
a given node in a pure random case. It is based on the follow-
ing null hypothesis: the normalized weights that correspond to
the connections of a certain node of degree k are produced by a
random assignment from a uniform distribution. To visualize this
process, k−1 points are distributed with uniform probability in the
interval [0, 1] so that it ends up divided into k subintervals. Their
lengths would represent the expected values for the k normalized
weights pij according to the null hypothesis. The probability den-
sity function for one of these variables taking a particular value
x is

ρ(x)dx = (k − 1)(1 − x)k−2dx, [1]

which depends on the degree k of the node under consideration.
In Materials and Methods we provide a detailed analysis of the
null model with respect to the actual weight distribution in two
real-world networks.

The disparity filter proceeds by identifying which links for each
node should be preserved in the network. The null model allows
this discrimination by the calculation for each edge of a given node
of the probability αij that its normalized weight pij is compatible
with the null hypothesis. In statistical inference, this concept is
known as the p value, the probability that, if the null hypothesis
is true, one obtains a value for the variable under consideration
larger than or equal to the observed one. By imposing a signifi-
cance level α, the links that carry weights that can be considered
not compatible with a random distribution can be filtered out with
an certain statistical significance. All the links with αij < α reject
the null hypothesis and can be considered as significant hetero-
geneities due to the network-organizing principles. By changing
the significance level we can filter out the links progressively focus-
ing on more relevant edges. The statistically relevant edges will be
those whose weights satisfy the relation

αij = 1 − (k − 1)
∫ pij

0
(1 − x)k−2dx < α. [2]
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Table 1. Sizes of the disparity backbones in terms of the percent-
age of total weight (%WT ), nodes (%NT ), and edges (%ET ) for
different values of the significance level α

U.S. airport network Florida Bay food web
α %WT %NT %ET α %WT %NT %ET

0.2 94 77 24 0.2 90 98 31
0.1 89 71 20 0.1 78 98 23
0.05(a) 83 66 17 0.05 72 97 16
0.01 65 59 12 0.01 55 87 9
0.005 58 56 10 0.0008(a) 49 64 5
0.003(b) 51 54 9 0.0002(b) 43 57 4

See points a and b in Fig. 3.

Note that this expression depends on the number of connections
k of the node to which the link under consideration is attached.

The multiscale backbone is then obtained by preserving all the
links that satisfy the above criterion for at least one of the two
nodes at the ends of the link while discounting the rest.∗ In this
way, small nodes in terms of strength are not belittled so that the
system remains in the percolated phase. In other words, we single
out the relevant part of the network that carries the statistically
relevant signal provided by the distribution with respect to local
uniform randomness null hypotheses. By choosing a constant sig-
nificance level α we obtain a homogeneous criterion that allows us
to compare inhomogeneities in nodes with different magnitudes
in degree and strength. By decreasing the statistical confidence,
more restrictive subsets are obtained, giving place to a potential
hierarchy of backbones. This strategy will be efficient whenever
the level of heterogeneity is high and weights are locally corre-
lated. Otherwise, the pruning could lose its hierarchical attribute
producing results analogous to the global threshold algorithm (see
section on networks with uncorrelated weights in SI Appendix).

The Multiscale Backbone of Real Networks. To test the performance
of the disparity filter algorithm, we apply it to the extraction of the
multiscale backbone of two real-world networks. We also com-
pare the obtained results with the reduced networks obtained
by applying a simple global threshold strategy that preserves
connections above a given weight ωc. As examples of strongly
disordered networks, we consider the domestic nonstop seg-
ment of the U.S. airport transportation system for the year 2006
(http://www.transtats.bts.gov) and the Florida Bay ecosystem in
the dry season (19). The U.S. airport transportation system for the
year 2006 gathers the data reported by air carriers about flights
between 1,078 U.S. airports connected by 11,890 links. Weights
are given by the number of passengers traveling the corresponding
route in the year symmetrized to produce an undirected represen-
tation. The resulting graph has a high density of connections, 〈k〉 =
22, making difficult both its analysis and visualization. The Florida
Bay food web comes from the ATLSS Project by the University of
Maryland (http://www.cbl.umces.edu/atlss.html). Trophic interac-
tions in food webs are symbolized by directed and weighted links
representing carbon flows (mg C y−1m−2) between species. The
network consists of a total of 122 separate components joined by
1,799 directed links.

In Table 1 and Fig. 1, we show statistics for the relative sizes—
in terms of fractions of total weight WT , nodes NT , and edges
ET —preserved in the backbones when the network is filtered by
the disparity filter and by the application of a global threshold,
respectively. The disparity filter reduces the number of edges sig-
nificantly even when the significance level α is close to 1, keeping at

∗ In the case of a node i of degree ki = 1 connected to a node j of degree kj > 1, we keep
the connection only if it beats the threshold for node j.

Fig. 1. Fraction of nodes kept in the backbones as a function of the fraction
of weight (Left) and edges (Right) retained by the filters.

the same time almost all of the weight and a high fraction of nodes.
Smaller values of α reduce even more the number of edges but,
interestingly, the total weight and number of nodes remain nearly
constant. Only for very low values of α—when the filter becomes
very restrictive—do the total weight and number of nodes start
decreasing significantly. In the case of the airports network, val-
ues around α ≈ 0.05 extract backbones with >80% of the total
weight, 66% of nodes, and only 17% of edges. The global thresh-
old filter, on the other hand, is not able to maintain the majority
of the nodes in the backbone for similar values of retained weight
or edges, as it is clearly seen in the first and second columns of
Fig. 1, respectively.

It is particularly interesting to analyze the behavior of the
topological properties of the filtered network at increasing lev-
els of reduction. Fig. 2 shows the evolution of the cumulative
degree distribution, i.e., Pc(k) = ∑

k′≥k P(k′), for different val-
ues of α (Left Top) and ωc (Right Top), respectively. The orig-
inal airports network is heavy tailed although it cannot be fit-
ted by a pure power-law function. Interestingly, the disparity
filter reveals a clear power-law behavior as α decreases, with
an exponent γ ≈ 2.3. On the other hand, the global thresh-
old filter produces subgraphs with a degree of distribution sim-
ilar to the original one, but with a sharp cutoff that becomes
smaller as the filter gets more restrictive. However, the weight
distribution P(ω) for the disparity filter (Left Middle) shows that
almost all scales are kept during the filtering process and only
the region of very small weights is affected, in contrast to the
global threshold filter that, by definition, cuts P(ω) off below ωc
(Right Middle).

In Fig. 2 (Bottom), we show the clustering coefficient C mea-
sured as the average over nodes of degree >1. It remains nearly
constant in both filters until they become too restrictive, in which
case clustering goes to zero.† In the case of the disparity filter,
clustering remains constant up to values of α ≈ 0.01. This is
precisely the value below which both the number of nodes and
the weight in the backbone start decreasing significantly. There-
fore, we can conclude that values of α in the range [0.01, 0.5]
are optimal, in the sense that backbones in this region have a
large proportion of nodes and weight, the same clustering of the
original network, and a stable stationary degree distribution, all

† The sudden increase of clustering for EB/ET = 0.2 is due to the reduction of the number
of nodes in the network, increasing then the chances of having a random contribution.
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Fig. 2. Topology of the filtered subgraphs for the U.S. airports network.
(Top) Cumulative degree distribution, Pc(k), for the disparity (Left) and global
threshold (Right) backbones. The values of ωc on the right plot are chosen to
generate subgraphs with the same weight as the ones shown on the left plot.
(Middle) Distribution of links’ weights of the different subgraphs generated
by the two filters. Symbols are the same as in the top plots. (Bottom) Cluster-
ing coefficient averaged over nodes of degrees >1 for the two methods as
a function of the fraction of edges in the backbones. Dashed lines show the
fraction of nodes and weight for a given fraction of edges.

with a very small number of connections compared with the orig-
inal network. It is important to stress that the disparity filtering
also includes the connections with the largest weight present in
the system. This is because the heavy tail of the P(ω) distribu-
tion is mainly determined by relevant large-scale weight. This is
clearly illustrated in Fig. 3, where we show that for statistical sig-
nificance levels up to α � 10−3, all of the edges included in the
10–20% of the P(ω) tail are included in the extracted multiscale
backbone.

As an illustration of the efficacy of the disparity filter, we visu-
alize the obtained multiscale backbone in Fig. 4. In the case of
the U.S. airport network we use the significance value α = 0.003
[see entry (b) in Table 1 and Fig. 3]. Interestingly, the disparity fil-
ter offers a perspective of the network that reveals its geographic
constraints (notice that each node is placed in the plane accord-
ing to its actual coordinates on the earth). It is possible to identify
local hubs with very well defined basins of attraction made of small
airports connected to them (21), a star-like pattern that is particu-
larly clear in Alaska airports or midwestern cities. In addition, the
hierarchy of the transportation system is fully highlighted, includ-
ing not just the most high flux connections but also small weight
edges that are statistically significant because they represent rele-
vant signal at the small scales. In this way, all important connection
on the local and global level are considered at once. This would not
be possible with a global threshold algorithm, which would simply
eliminate all connections below the scale introduced by the cutoff
threshold.

Fig. 3. Fraction of edges in different global threshold backbones (GTB)
included in the disparity backbone (DB) as a function of the significance level.
As shown, points a and b in the U.S. airport network mark disparity back-
bones including a 100% of the 40 W and 10 W global threshold backbones,
respectively; points a and b in the Florida Bay food web mark disparity back-
bones including a 100% of the 40 W and 13 W global threshold backbones,
respectively. See also Table 1.

The Florida Bay food web is a directed network (see SI Appendix
for an explanation of the methodology in the case of weighted
directed neworks). We draw its multiscale backbone for α =
0.0008, which contains the top 40% of heaviest links (see entry
(a) in Table 1 and Fig. 3). Notice that, in this case, the concentra-
tion of weight in a few links is so important that the represented
disparity backbone contains approximately half of the total weight
in the network. Again, star motifs are uncovered, formed by mainly
incoming connections, as for the pelican, or mainly outgoing ones,
bivalves. More in general, specific subsystems dominated by signif-
icant fluxes can be easily identified, which might be evidence of an
historical evolution of the network from smaller modular and dis-
connected structures to the complete ecosystem we observe today.
Another interesting remark refers the presence in the backbone of
species with relatively few trophic links. Species with few connec-
tions are usually assumed to have a low impact on the ecosystems.
However, counterexamples can be found and such species may act
as the structural equivalent of keystone species, whereas species
with many trophic linkages may be more conceptually similar
to dominant species (22). Because of its local approach, our fil-
ter mixes both types in the backbones, where simultaneously big
hubs coexist—like the Predatory Shrimp, which in the complete
network approximately has an average number of incoming con-
nections and the maximum number of outgoing ones, 13 and 61,
respectively—with more modest species in terms of connections—
like Benthic Flagellates, with in-degree 1 and out-degree 10, both
below the average.
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Fig. 4. Pajek representations (20) of disparity backbones. (Left) The α = 0.003 multiscale backbone of the 2006 domestic segment of the U.S. airport trans-
portation system. This disparity backbone includes entirely the top 10% of the heaviest edges. (Right) The α = 0.0008 multiscale backbone of the Florida Bay
ecosystem in the dry season. This disparity backbone includes entirely the top 40% of the heaviest edges. These disparity backbones correspond to points (b)
for the U.S. airport network and (a) for the Florida Bay food web in Table 1 and Fig. 3. The connection with maximum weight for the U.S. airport network is
Atlanta-Orlando, with value ωmax = 1, 290, 488 passengers/year and for the Florida Bay Food Web Free Bacteria to Water Flagellates with value ωmax = 12.90
mg C y−1m−2.

Conclusions
The disparity filter exploits local heterogeneity and local correla-
tions among weights to extract the network backbone by consider-
ing the relevant edges at all the scales present in the system. The
methodology preserves an edge whenever its intensity is statisti-
cally not compatible with respect to a null hypothesis of uniform
randomness for at least one of the two nodes the edge is incident
to, which ensures that small nodes in terms of strength are not
neglected. As a result, the disparity filter reduces the number of
edges in the original network significantly, keeping, at the same
time, almost all of the weight and a large fraction of nodes. As
well, this filter preserves the cutoff of the degree distribution, the
form of the weight distribution, and the clustering coefficient.

As a criticism, one could say that it only works in the case of sys-
tems with strong disorder, where the weights are heterogeneously
distributed both at the global and local level. Nevertheless, all
filters present limitations; one has to take them into account in
relation to the problem under analysis. Which strategy is the most
appropriate for a particular problem should be carefully judged
and we cannot exclude the possibility that a combination of dif-
ferent techniques turns out to be the most appropriate. Yet, the
ubiquitous presence of fluctuations and disorder spanning many
length scales uncovered in many real networks provides a wide
range of potential applications for the present methodology in
biology (metabolic networks, brain, periodically regulated genes),
information technology (Internet, World Wide Web), economics
(World Trade Web), and finance (stock markets).

Materials and Methods
Local Heterogeneity of Edges’ Weight. To assess the effect of inhomogeneities
in the weights at the local level, for each node i with k neighbors one can
calculate the function (17, 18)

ϒi(k) ≡ kYi(k) = k
∑

j

p2
ij . [3]

The function Yi(k) has been extensively used in several fields as a standard
indicator of concentration for more than half a century: in ecology (23), eco-
nomics (24, 25), physics (26), and recently in the complex networks literature
where it is known as the disparity measure (17). In all cases, Yi(k) character-
izes the level of local heterogeneity. Under perfect homogeneity, when all
the links share the same amount of the strength of the node, ϒi(k) equals 1
independently of k, while in the case of perfect heterogeneity, when just one
of the links carries the whole strength of the node, this function is ϒi(k) = k.
An intermediate behavior is usually observed in real systems with ϒi(k) ∝ kα

and the exponent close to 1/2. In this case, the weights associated with a
node are then peaked on a small number of links with the remaining connec-
tions carrying just a small fraction of the node’s strength.This is the situation

where our filter will be more useful, highlighting structures impossible to
detect using the global threshold filter. In this way, the disparity function can
be used as a preliminary indicator of the presence of local heterogeneities.

The Null Model. The probability density function of Eq. 1, along with the
joint probability distribution for two intervals given by

ρ(x, y)dxdy = (k − 1)(k − 2)(1 − x − y)k−3�(1 − x − y)dxdy , [4]

Fig. 5. Heterogeneity of weights at the local and global scales. (Top)
Sequential diagram illustrating the disparity filtering technique at the local
level. We focus on the central node in orange and its first neighborhood.
(a) Original network; (b) edges of the central node with weights that are
statistically significant heterogeneity; (c) the same for the neighbors; (d)
intersection of the colored edges in B and C that are finally selected in the
backbone. (Middle) Distribution of link’s weights spanning for six decades.
Even though this distribution does not have a clear functional form, a direct
power-law fit of the form ω−β yields an exponent β = 1.1, so with a diverging
first moment. (Bottom) Scattered plot of the disparity measure for individ-
uals airports of the U.S. airport network. The gray area corresponds to the
average plus 2 standard deviations given by the null model.
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where �(·) is the Heaviside step function, can be used to calculate the statis-
tics of ϒnull(k) for the null model. The average µ(ϒnull(k)) = kµ(Ynull(k)) and
the variance σ 2(ϒnull(k)) = k2σ 2(Ynull(k)) are found to be:

µ(ϒnull(k)) = 2k
k + 1

[5]

σ 2(ϒnull(k)) = k2
(

20 + 4k
(k + 1)(k + 2)(k + 3)

− 4
(k + 1)2

)
. [6]

Notice that the two moments depend on the degree k so that each node in the
network with a certain degree k should be compared with the corresponding
null model.

The observed values ϒob(k) compatible with the null hypothesis could be
defined as those in the region between 〈ϒnull(k)〉 + a · σ (ϒnull(k)) and per-
fect homogeneity, so that local heterogeneity will be recognized only if the
observed values lie outside this area,

ϒob(k) > µ(ϒnull(k)) + a · σ (ϒnull(k)). [7]

The variable a is a constant determining the confidence interval for the
evaluation of the null hypothesis. The larger it is the more restrictive becomes
the null model and the more disordered weights should be for local hetero-
geneity to be detected. A typical value in analogy to gaussian statistics could
be for instance a = 2.

As shown in Fig. 5, the overall distributions of weights for both networks
considered here are very broad, with tails approaching power-law behaviors
spanning six decades for the U.S. airport network and more than four for
the Florida Bay food web. At the local level, ϒ(k) measurements cannot be
explained by the null model for most nodes.
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